*116_007_Ethereum_5-002

5.1.5. Gas and Payment.

One very important concept in Ethereum is the concept of fees. Every computation that occurs as a result of a
transaction on the Ethereum network incurs a fee. This fee is paid in a denomination called “gas.”

Gas is the unit used to measure the fees required for a particular computation.

Gas price is the amount of Ether you are willing to spend on every unit of gas, and is measured in “GWei.”
“Wei” is the smallest unit of Ether, where 1018 Wei represents 1 Ether. One GWei is 1,000,000,000 Wei.

With every transaction, a sender sets a gas limit and gas price. The product of gas price and gas imit represents
the maximum amount of Wei that the sender is willing to pay for executing a transaction.

For example, let’s say the sender sets the gas limit to 50,000 and a gas price to 20 GWwei. This implies that the
sender is willing to spend at most 50,000 x 20 GWwei = 1,000,000,000,000,000 Wei = 0.001 Ether to execute
that transaction.

Gas Limit Gas Price Max transaction fee

50,000 20 gwei 0.001 Ether

Remember that the gas limit represents the maximum gas the sender is willing to spend money on.
If they have enough Ether in their account balance to cover this maximum, they’re good to go.
The sender is refunded for any unused gas at the end of the transaction, exchanged at the original rate.

use gas use gas
Start -50 -30 End -
| Ope o - Receiver
Sender transaction ° transaction
250 200 170 170
I Remaining
Start gas gas

In the case that the sender does not provide the necessary gas to execute the transaction, the transaction runs
“out of gas” and is considered invalid. In this case, none of the gas is refunded to the sender.

Sender s‘an- Operaton Operation Operation Operation l Receiver
SRISACHOn . Revert State
OuUT OF
use gas use gas as
250 —— GAS
100 50 100

T 0

Start gas

"116_007_Ethereum_5-002 Page 1

[N

In this case, the transaction processing aborts and any state changes that occurred are reversed, such that we
end up back at the state of Ethereum prior to the transaction. Additionally, a record of the transaction failing
gets recorded, showing what transaction was attempted and where it failed.

And since the EVM already expended effort to run the calculations before running out of gas,
logically, none of the gas is refunded to the sender.

The transaction’s gas limit must be equal to or greater than the intrinsic gas used by the transaction.
The intrinsic gas includes:

. a predefined cost of 21,000 gas for executing the transaction
. a gas fee for data sent with the transaction (4 gas for every byte of data or code, and 68 gas for every non-

zero byte of data or code)

. if the transaction is a contract-creating transaction, an additional 32,000 gas.

Vidinés dujos

Predefined gas fee Storage fee Contract creation

Intrinsic gas = + +
21,000 4(X) + 68(Y)

w
n
o
(=]
(=

r
1
I
I
1]
1
1
1
I
I
=

The sender’s account balance must have enough Ether to cover the “upfront” gas costs that the sender must pay.

The calculation for the upfront gas cost is simple:

First, the transaction’s gas limit is multiplied by the transaction’s gas price to determine the maximum gas cost.

Then, this maximum cost is added to the total value being transferred from the sender to the recipient.

iSankstinis mokestis

Gas Limit Gas Price Value

Upfront cost = X +
50,000 20 gwei 0.05 Ether

If the transaction meets all of the above requirements for validity, then we move onto the next step.
First, we deduct the upfront cost of execution from the sender’s balance, and increase the nonce of the

sender’s account by 1 to account for the current transaction.
At this point, we can calculate the gas remaining as the total gas limit for the transaction minus the

intrinsic gas used.

Intrinsic gas

N
4 N

1]

Gas Limit Predefined gas fee Storage fee 1 Contract creation 1

Gas remaining = — + + ! !
BN nnn 21 nnNn AMYY & RV 29 nnn

"116_007_Ethereum_5-002 Page 2

Intrinsic gas

N
% D

Gas Limit Predefined gas fee Storage fee Contract creation

1

1

Gas remaining = — + + !
50,000 21,000 4(X) + 68(Y) |

I

,
1
1
1
1
1
1
1
1
1
.

Next, the transaction starts executing. Throughout the execution of a transaction, Ethereum keeps
track of the “substate.” This substate is a way to record information accrued during the transaction
that will be needed immediately after the transaction completes. Specifically, it contains:

e Self-destruct set: a set of accounts (if any) that will be discarded after the transaction
completes.

e Log series: archived and indexable checkpoints of the virtual machine’s code execution.

e Refund balance: the amount to be refunded to the sender account after the transaction.
Remember how we mentioned that storage in Ethereum costs money, and that a sender is
refunded for clearing up storage? Ethereum keeps track of this using a refund counter. The
refund counter starts at zero and increments every time the contract deletes something in
storage.

Next, the various computations required by the transaction are processed.

Once all the steps required by the transaction have been processed, and assuming there is no
invalid state, the state is finalized by determining the amount of unused gas to be refunded to the
sender. In addition to the unused gas, the sender is also refunded some allowance from the “refund
balance” that we described above.

Once the sender is refunded:

» the Ether for the gas is given to the miner-validator

e the gas used by the transaction is added to the block gas counter (which keeps track of the total
gas used by all transactions in the block, and is useful when validating a block)

« all accounts in the self-destruct set (if any) are deleted

Finally, we’re left with the new state and a set of the logs created by the transaction.
Now that we’ve covered the basics of transaction execution, let’s look at some of the differences

between contract-creating transactions and message calls.
From <https://preethikasireddy.medium.com/how-does-ethereum-work-anyway-22d1df506369>

5.1.5. Signature.

Asymmetric Signing - Verification — .
Sign(PrKA’ m) =6 = (r’ s) User's Private Key Transaction Data TX

V=Ver(PuK,, m, 6), Ve{True, False} alioe) l Mx):h
Keccak-256

Elliptic Curve ECDSA| h :
o : : H-function
Ali Digital Signature Algorithm
ice secp256k1

PrKa = x
g:l:) | Sign ‘/h Digital Signature User's Public Key
: Alice's Sign(PrKa, h) =6 =(r, s) PuKa=a
: private key h

Verify Signature
r
s } G V=Ver(PuKa, h, G)l

Bah

"116_007_Ethereum_5-002 Page 3

https://preethikasireddy.medium.com/how-does-ethereum-work-anyway-22d1df506369

V=Ver(PuKpy, h, G)l

Bob Alice's
public key

Bob
° PuKa. = a Valid?
Hello | . | Verify / \
Yes Mo

v v

Process Transaction Reject Transaction

Keccak-256

For signature creation Ethereum is using H-function Keccak-256.

Keccak-256 is widely used in blockchain technologies, for generating unique identifiers and ensuring
data integrity being a "finger print" of data.

Keccak family, forms the basis of the SHA-3 (Secure Hash Algorithm 3) standard.

Key Features

Deterministic: The same input always produces the same hash output.

Fixed Output Size: Regardless of input size, the output is always 256 bits (64 hexadecimal
characters).

Collision Resistance: It is computationally infeasible to find two different inputs that produce the
same hash.

Example Code in Python
You can compute a Keccak-256 hash using the pysha3 library in Python, for example:

import hashlib

Input data

data = "Hello, Keccak-256!"

Compute Keccak-256 hash

hash_object = hashlib.new('sha3_256")
hash_object.update(data.encode('utf-8"))
keccak_hash = hash_object.hexdigest()
print(f"Keccak-256 Hash: {keccak_hash}")

For the input "Hello, Keccak-256!", the output hash will look like:
Keccak-256 Hash: 8b6f9c8e4c4b8e8f6e8c8b6f9c8e4c4b8e8f6e8c8b6f9c8e4c4b8e8f6e8c8b6-

Let us encode a simple transaction according to the template.

"116_007_Ethereum_5-002 Page 4

Transaction - Tx in blockchain Transaction

[nonce]
|_m1=2000 A m3=1000 <
% 2l PrKa=x PrKe=z I gasLimit II gasPrice |
m2=3000 Puka=a | | a-gp0p | uKe=e
P2———> l to l I value |

Signaturefield | v | | s |

Let us consider the depicted transaction written in symbolic form: \/\

Transaction-Tx: nonce| | gasLimit| | gasPrice| |to Emily| | 1000 Mwei| | Version:0x1C| |r| |s| |data

Then the Keccak-256 H-function can be computed using the following online tool
Keccak-256 - Online Tools

Keccak-256

This Keccak-256 online tool helps you calculate hashes from strings. You can input UTF-8, UTF-16, Hex, Base64, or other encodings.

Settings Input

Transaction-Tx: nonce| |gasLimit| |gasPrice||to Emily| 1000 Mwei| |Version:0x1cC||z|ls|ldata
Hash

Auto Update

Remember Input

Input Encoding

UTF-8

QOutput Encoding
Hex (Lower Case) Qutput

50720a81dld26afbTaabclE0l7e6445bebfbeidbddefbceB2068d04£5dedbs0b

As we see the result in Output field by adding the prefix Ox is the following:
0x90720a91d1d26afb7aabc18017e6445bebf8e3d8d4ef8ce82068d04f9de6b90b

5.1.6. Message calls.
Message call transaction is a type of transaction in Ethereum that is used to interact with a smart contr

act or another External Owned Account - EOA .

World State

"116_007_Ethereum_5-002 Page 5

https://emn178.github.io/online-tools/keccak_256.html

Account A Account B

Message

Message is passed between two Accounts.
Message is Data represented as a set of bytes and Value is specified as Ether.

Message call is initiated by an Externally Owned Account -
EOA and sends a message to the contract, triggering a function call within the contract.

From <https://www.bing.com/search?pglt=418&q=ethereum+message-+calls&cvid=456c3e2325f540438c9fb561d01a6743
&gs lcrp=EgRIZGdIKgYIABBFGDkyBggAEEUYOTIICAEQ6QcY FXSAQkxODAXN20owajGoAgCWAgA&FORM=ANNAB1&PC=U531>

Transaction

Address N Account state N Address N Account state N

code storage code storage

World state Gy World state O t+1

The execution of a message call is similar to that of a contract creation, with a few differences.

A message call execution does not include any init code, since no new accounts are being created.
However, it can contain input data, if this data was provided by the transaction sender.

Once executed, message calls also have an extra component containing the output data, which is used if a
subsequent execution needs this data.

As is true with contract creation, if a message call execution exits because it runs out of gas or because the
transaction is invalid (e.g. stack overflow, invalid jump destination, or invalid instruction), none of the gas
used is refunded to the original caller. Instead, all of the remaining unused gas is consumed, and the state is
reset to the point immediately prior to balance transfer.

"116_007_Ethereum_5-002 Page 6

https://www.bing.com/search?pglt=41&q=ethereum+message+calls&cvid=456c3e2325f540438c9fb561d01a6743&gs_lcrp=EgRlZGdlKgYIABBFGDkyBggAEEUYOTIICAEQ6QcY_FXSAQkxODAxN2owajGoAgCwAgA&FORM=ANNAB1&PC=U531
https://www.bing.com/search?pglt=41&q=ethereum+message+calls&cvid=456c3e2325f540438c9fb561d01a6743&gs_lcrp=EgRlZGdlKgYIABBFGDkyBggAEEUYOTIICAEQ6QcY_FXSAQkxODAxN2owajGoAgCwAgA&FORM=ANNAB1&PC=U531

Triggered by transaction Triggered by EVM code

| Transaction |

|
4)

Message
EOA ——— | Account

- J

4)

Message
—-'

- J

Contract
account

Transaction triggers an associated message. EVM can also send a message.

Four cases of message

By Transaction From EOA

Message

| By EVM code From CA
|
|
|
|
|
|
!

EOA | —— | EOA ;
|
|
|
|
|
|
|

To EQA i
: CA Message
| code
J | J
— — ——— ——— ———— —— —— — - —————— —— — j: ___
|
1 I
|
A | ™
I
EQA I
Message |
|
To CA |
I Message
e
I code
I

S

Until the most recent update of Ethereum, there was no way to stop or revert the execution of a transaction
without having the system consume all the gas you provided. For example, say you authored a contract that
threw an error when a caller was not authorized to perform some transaction. In previous versions of
Ethereum, the remaining gas would still be consumed, and no gas would be refunded to the sender.

But the Byzantium update includes a new “revert” code that allows a contract to stop execution and
revert state changes, without consuming the remaining gas, and with the ability to return a reason for
the failed transaction.

An information concerning the Byzantine fault can be found in:

"116_007_Ethereum_5-002 Page 7

https://en.wikipedia.org/wiki/Byzantine_fault

https://en.wikipedia.org/wiki/Byzantine fault
If a transaction exits due to a revert, then the unused gas is returned to the sender.

5.2.1. Ethereum blocks

Transaction view

Value Value

A
/.

= P S T
Y

- [m—) »
1S m o5 .
‘\ ¥ A -
| L ® R
RQMs:e{ETH e. K/ . @ @
. aver

(o
2 » .I 4 User
EVM Wallet .\e Wallet received 2 ETH
Data Distributed Network Data

Ethereum transaction order is not guaranteed.

External actor A
3rd submitted
2
\
\

External actor B \\
: 1st submitted 2nd submitted \

| Transaction | | Transaction | \\
- \
S - ~
. YU
Ran 0 = Sl \\

S S s order (timing)

\ =N \\‘ -

T P vl

Q?? T |
----------- - e
—s | Transacton | __ | Transacton | | Transac i

Blockchain

Ordering inner block

"116_007_Ethereum_5-002 Page 8

https://en.wikipedia.org/wiki/Byzantine_fault

sender

sender
sender

N\

\

Transaction
pool

determine¢¢
by miner

| Transaction C |
| Transaction A |

| Transaction B |

l ordered

Block

Miner can determine the order of transactions in a block.

Blockchain

Genesis block

$-5-8 -

ho=H(BO||)
hi=H(B1||ho)
ho=H(B2||hy)
- ab éb

hi=H(Bi||hi-1)

Blockchain

60 = Sign(PrKao, ho)
61 = Sign(PrKu, hi)
6, = Sign(PrK>, hy)

6i = Sign(PrKi, hi)

Decentralised database

"116_007_Ethereum_5-002 Page 9

Notations:

hi - is a h-value of block Bi

|| - is a concatenation operation of strings

Sign(,) - is a digital signing operation

6i - is a signature value of mined block number i
consisting of two numbers denoted by (ri, Si)

PrKi - Private Key of miner i for signature creation

:\

‘\-

/:

P2P
netwol

: orld state

A blockchain is a globally shared, decentralised, transactional database.

orld statg

\

\

A transaction-based state machine

Transaction

World state ' World state

Gt O t41

P2P network inter nodes

Ethereum can be viewed as a transaction-based state machine.

Ethereum

node

f
|

Ethereum

node

e —

P2P

<ﬂ

Ethereum

node

2
|
I

Decentralised nodes constitute Ethereum P2P network.

“116_007_Ethereum_5-002 Page 10

Interface to a node

External
actor

Contract creation Message call Inspection

I Transaction I Transaction
v v Transparency

EOA - Externally Owned Account

S Interface (Web3 API) | —-—

| | |
Ethereum
world World state

Ethereum node (Geth, Parity, ...)

External actors access the Ethereum world through Ethereum nodes.

Ethereum architecture formally-mathematically is presented in Ethereum Yellow Paper

Ethereum Yellow Paper: a formal specification of Ethereum, a programmable blockchain

The Ethereum Yellow Paper serves as the definitive technical document for the Ethereum protocol. It was init
ially written by Gavin Wood and is now maintained by Andrew Ashikhmin along with contributions from vari

ous experts globally.

Ethereum architecture structurally is presented in:
blockchain - Ethereum block architecture - Ethereum Stack Exchange

"116_007_Ethereum_5-002 Page 11

https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.stackexchange.com/questions/268/ethereum-block-architecture

Successful miner’s computer
Takes the following steps and broadcasts block hesder, 1. 1o network

Determine Transactions
Miner picks transactices to process (from those beosdeasted)

Determine Ommers

Mamer finds and includes vaiid ommers.

Apply Rewards

Update sccount batunce(s) to reward valid blocks

Compute a Valid State
Block Finalisation Defines result of all selected stase transitions
State Transition Cycle Defioes result of a single rnsacion 8,., = Y(g,.7)

Execution Cycle Defines result of u single cycle of the state machine
|Ethereun Virtual Mschine, EVM —

US|

Ethereum Blockchain Mechanism (Proof Of Work)
An interpretation of the Ethereum Project Yellow Paper
G Wored,“Bbeream A st g, 014,

decertratied geredied i

Block, &
Bheck Header, 1 1 8,

B—

‘Transaction Receipts Tric

Wost
Norde

_L:‘ wbates 12 00AR 2 56 Hath
Information required to derive Block Header
Account storuge contents Trie
' ' g e 1 e o oy v s mt
u = I— |
EEEEEBE
Transaction, 1 Transaction Trie, T
.........
|
|

Transaction List, &, [|

==

The source is Ethereum Guide: Understanding Ethereum's Structures
By: Ricardo Santos - VP EngineeringDate: 22/08/2023

From <https://parfin.io/en/blog/the-ethereum-guide-understanding-ethereums-structures>

Ethereum Blocks

Genesis block
<L <>
H @ Ea @

Blockchain

A high level diagram of the Ethereum block.

Ethereum block is divided in two parts, the block header and

the block body.

The block header is the blockchain part of Ethereum. This is the
structure that contains the hash of its predecessor block (also known as
parent block), building a cryptographically guaranteed chain.

The block body contains a list of transactions that have been included

l

Transaction C

Transaction A

I

Transaction B

Block

ordered

Block Header

in this block and a list of uncle (ommer) blocks headers (if you want
to know more about uncle blocks recommend this post).

“116_007_Ethereum_5-002 Page 12

Block Body

Transactions

https://medium.com/blockchannel/life-cycle-of-an-ethereum-transaction-e5c66bae0f6e
https://medium.com/blockchannel/life-cycle-of-an-ethereum-transaction-e5c66bae0f6e
https://github.com/ethereum/wiki/wiki/Design-Rationale#uncle-incentivization
https://parfin.io/en/blog/the-ethereum-guide-understanding-ethereums-structures

Iransactons

The block body contains a list of transactions that have been included

in this block and a list of uncle (ommer) blocks headers (if you want

to know more about uncle blocks recommend this post). Uncle blocks headers

Block 2

"116_007_Ethereum_5-002 Page 13

Block N

https://medium.com/blockchannel/life-cycle-of-an-ethereum-transaction-e5c66bae0f6e
https://medium.com/blockchannel/life-cycle-of-an-ethereum-transaction-e5c66bae0f6e
https://github.com/ethereum/wiki/wiki/Design-Rationale#uncle-incentivization

